A graphene layer consists of carbon atoms linked by covalent bonds, forming a honeycomb structure. Its excellent electron mobility, chemical and physical stability, electrical and thermal conductivity ...
A research team has developed an n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary ...
A new publication from Opto-Electronic Science; DOI 10.29026/oes.2024.230046 discusses photo-driven Fin Field-Effect Transistors. Infrared detectors are the core components of infrared detection ...
Field-effect transistors (FETs) are the cornerstone of modern electronic devices, providing the essential functionality for digital logic, analog processing and power management. The fundamental ...
A new technical titled “Impact of Random Phase Distribution on Ferroelectric Tunnel Field-Effect Transistors With Mitigation Strategies for Compute-in-Memory Applications” was published by researchers ...
With the right mix of materials, TFETs promise cooler, smaller, and more efficient circuits for everything from the Internet of Things to brain-inspired computers. But before they can leave the lab, ...
A technical paper titled “CFET Beyond 3 nm: SRAM Reliability under Design-Time and Run-Time Variability” was published by researchers at TU Munich and IIT Kanpur. Find the technical paper here. May ...
Share on Facebook (opens in a new window) Share on X (opens in a new window) Share on Reddit (opens in a new window) Share on Hacker News (opens in a new window) Share on Flipboard (opens in a new ...
A transistor is a tiny but powerful electronic component that acts like a switch or an amplifier. It is made from a semiconductor material, usually silicon, and has three legs for connection to ...
This research was published in Advanced Science ("High-temperature and high-electron mobility metal-oxide-semiconductor field-effect transistors based on n-type diamond"). World’s First N-Channel ...
(Left) Atomic force microscope image of diamond epilayer surface morphology. (Middle) Optical microscope image of the diamond MOSFET. (Right) Performance of the MOSFET measured at 300°C. The drain ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results